
www.data61.csiro.au

REFERENCES

[Bosse and Zlot, 2013]M. Bosse and R. Zlot. Place recognition using keypoint
voting in large 3D lidar datasets. In 2013 IEEE International Conference on
Robotics and Automation, pages 2677–2684, May 2013.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge funding of the project
bythe CSIRO and QUT. The institutional support of CSIRO
andQUT, and the help of several individual members of staff
inthe Autonomous Systems Laboratory including Tom
Lowe,Gavin Catt and Mark Cox are greatly appreciated.

Probabilistic Surfel Fusion 
for Dense LiDAR Mapping

Problem Statement

We present a new approach for dense LiDAR mapping using probabilistic surfel fusion. The proposed system is capable
of reconstructing a large-scale high-quality dense surface element (surfel) map from spatially redundant multiple views.
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Proposed Method

Figure 1: Degenerate surfel normal caused 
by a degenerate points shape.
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Conclusion

Figure 6: Illustration of surfel matching
problem between a local map surfel and the
global map surfels.

Figure 7: Proposed two staged matching algorithm. The step1
controls map resolution whereas the step2 reduces map noise by
searching deeper along the LiDAR beam direction.
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The proposed two staged matching algorithm accurately finds the matched 
surfel of the new input surfel from the local map in the global map. 

Probabilistic dense surfel fusion for LiDAR is proposed. Our method showed
denser but lesser noise level in building a dense surfel map. Also, the
proposed method has an advantage on long-term SLAM applications.

Figure 9: The experimental handheld
3D spinning LiDAR for mobile mapping.

Figure 8: Surfel statistics and uncertainties. [left] The number of surfels and the
average number of fusion per surfel, [right] Uncertainties of surfel positions and
normal vectors

When building the dense surfel map from
LiDAR points cloud, there are two main
issues. The first issue is surfel degeneracy in a
normal direction of a surfel which causes
incorrect normal directions. The other issue is
that surfel matching is less accurate or not
straightforward in the traditional methods.
Radius search cannot handle sensor noise
efficiently and it is difficult to control the
surface resolution in the uncertainty based
method.
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Figure 4: (a) Example of a 3D ellipsoid surfel map with a 60cm resolution and (b) a 2D disk surfel map with a 1cm resolution.
Both are color-coded by normal directions. Recognize the ceiling and the floor in blue, and objects and walls in orange and
green.

3D ellipsoid surfel map
is faster and more
robust to run lo-
calization, and dense
2D disk surfel map is
denser and more ac-
curate to 3D recon-
struct the environ-
ment.

Figure 2: Surfel matching problem in a
radius search method(left) and uncertainty
based method(right)

Figure 3: The proposed system is composed of two main stages. Local mapping stage processes the raw LiDAR data and
creates local maps. The global mapping stage build a globally consistent map by merging them.

All matched surfels are
merged and updated by a
Bayesian formula.

Figure 11: (a) Raw camera image of the office in the
red circle. (b) Synthesized image from the surfel
map. (c) Surfels map colored with normal direction.
(d) Depth image.

Figure 10: Reconstructed 3D surfel map of an 20x20 meter office with
a color fusion by camera images.
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Figure 5: The Illustration of the relationship
between the underling points cloud of a surfel and
the normal uncertainty

For surfel normal update,
an additional step for tan-
gentiality reinforcement is
required.

Surfel Fusion


